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Abstract— For a safe and reliable operation of the smart
grid, timely detection of cyber-attacks is of critical importance.
Moreover, considering smarter and more capable attackers,
robust detection mechanisms are needed against a diverse range
of cyber-attacks. With these purposes, we propose a robust
online detection algorithm for (possibly combined) false data
injection (FDI) and jamming attacks, that also provides online
estimates of the unknown and time-varying attack parameters
and recovered state estimates. Further, considering smarter
attackers that are capable of designing stealthy attacks to prevent
the detection or to increase the detection delay of the proposed
algorithm, we propose additional countermeasures. Numerical
studies illustrate the quick and reliable response of the proposed
detection mechanisms against hybrid and stealthy cyber-attacks.

Index Terms— Smart grid, Kalman filter, quickest detection,
cumulative sum (CUSUM), online estimation, state recovery, false
data injection attack, jamming attack, hybrid attack, stealthy
attack, Shewhart test, chi-squared test.

I. INTRODUCTION

A. A Brief Overview of Cyber-Attacks and Countermeasures
in Smart Grid

Due to the integration of advanced signal processing, com-
munication, and control technologies, smart grid relies on
a critical cyber infrastructure that is subject to adversarial
cyber threats [1]–[4]. The smart grid is regulated based on
estimated system states and the main aim of attackers is to
damage/mislead the state estimation mechanism and thereby to
cause wrong/manipulated decisions in the energy management
system of the smart grid. Some potential consequences of a
successful cyber-attack are regional power blackouts, manip-
ulated electricity market prices [5], [6], and destabilization
of the power grid [7]. Such cyber-attacks are also seen in
practice. For instance, on December 23, 2015, the Ukrainian
power system was attacked and the resulting power blackout
affected around 200,000 people for several hours [8].

The Ukraine attack has demonstrated that attackers have
more capabilities than predicted [8]. Namely, (i) attackers can
access and monitor the power system over long periods of
time without being detected, (ii) attackers are able to perform
cyber-attacks by hacking smart grid components (smart me-
ters, control centers, etc.), manipulating/jamming the network
communication channels, and accessing and manipulating the
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database of the control center [2], [8], [9]. Hence, cyber-
attacks significantly threaten the safe and reliable operation
of the power grid in practice. Effective countermeasures need
to be developed considering the worst-case scenarios where
the attackers are fully capable of performing a diverse range
of cyber-attacks. The first step in a defense mechanism is early
detection of cyber-attacks. After detecting an attack, effective
mitigation schemes should then be implemented.

Recently, the false data injection (FDI) attacks [2], [10]–[12]
and the jamming attacks [9], [13]–[15] against the smart grid
are extensively studied in the literature and several detectors
are proposed. The proposed detectors are mostly outlier detec-
tors, i.e., they classify a sample measurement as either normal
or anomalous. Conventional detectors classify a measurement
as anomalous if the measurement residual exceeds a certain
threshold [10], [16]–[19]. More advanced machine learning
techniques are also considered for classification of anomalous
measurements [20], [21]. Moreover, in [12], firstly a Markov
graph model for system states is learned under normal system
operation and then attacks/anomalies are detected based on the
consistency of new measurements compared to the learned
nominal model. Further, in [22], based on the least squares
(LS) state estimator, a multi-step procedure is presented to
detect and classify cyber-attacks on meter measurements,
network line parameters, and network topology, and then to
make corrections for attack mitigation.

In [23]–[25], robust extended Kalman filters have been
proposed where the main aim is to bound the effects of
outliers on the state estimation mechanism. No specific attack
types are considered so that using such schemes, it is not
possible to distinguish a real attack from random outliers, e.g.,
due to heavy-tailed non-Gaussian noise processes. Moreover,
such schemes have breakdown points such that if outliers,
significantly far away from the nominal measurements, are
observed, then the proposed filters fail to keep track of the
system state.

In order to improve the time resolution and also to detect
cyber-attacks more reliably, several online detectors based on
the quickest detection theory are proposed. For instance, in
[26] and [27], cumulative sum (CUSUM)-based schemes are
considered to detect FDI attacks where the state estimation
is based on the conventional LS methods. More recently, in
[28], CUSUM-based detection schemes are proposed to detect
FDI and denial of service (DoS) attacks (separately) in a
dynamic setting and their advantages over the outlier detectors
and the LS-based detectors are demonstrated. Further, in [29],
a nonparametric CUSUM detector is proposed that do not
assume any attack model and only evaluates the deviation of
meter measurements from the baseline statistics, i.e., normal
system operation. In [30], a window-based CUSUM detector
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is proposed for detection of FDI attacks where the attack
parameters of interest are estimated based on the most recent
sliding window of measurements.

B. Contributions

In this paper, we propose robust mechanisms for timely
detection of potentially combined and stealthily designed FDI
and jamming attacks. The proposed mechanisms are tightly
connected to an estimation mechanism, which makes both the
detection and state estimation schemes robust against unknown
and time-varying attack variables. In particular, online maxi-
mum likelihood estimates (MLEs) of the attack types, set of
attacked meters, and the attack magnitudes are used in attack
detection. Moreover, recovered state estimates are computed
based on the online MLE estimates of the attack variables. No
restrictive assumptions are made about an attacker’s strategy,
i.e., an attacker can design and perform arbitrarily combined
FDI and jamming attacks, targeting any subset of meters in any
magnitude and can also change its attack parameters over time.
Further, considering the possibility of smarter and more capa-
ble attackers, additional countermeasures are proposed against
stealthily designed cyber-attacks. These make the proposed
detection schemes highly robust against a significantly wide
range of potential cyber-attacks targeting the smart grid.

Since the smart grid is a highly complex network, any
anomaly/failure in a part of the system can quickly spread
over the network and lead to new unpredicted failures. Hence,
timely attack detection and mitigation is crucial. In this paper,
for timely detection, we present real-time detection mecha-
nisms. Moreover, to help for timely attack mitigation and quick
system recovery, we provide online estimates of the attack
types, set of attacked meters and attack magnitudes. Note that
having an estimate for the attack type can be useful since
different countermeasures may need to be employed against
different types of attacks. Further, considering that the real
power grid is a huge network consisting of many meters, an
estimate of the attacked meters can be critical for a timely
and effective attack mitigation, e.g., via isolating the attacked
meters during the recovery procedure. Moreover, estimates of
attack magnitudes are needed to recover attack-free states.

We list our main contributions as follows:
• A novel low-complexity online detection and estimation

algorithm is proposed against (possibly) combined FDI
and jamming attacks. The proposed algorithm is robust to
unknown and time-varying attack types, magnitudes, and
set of attacked meters. Further, recovered state estimates
and closed-form online MLE estimates of the attack
variables are presented.

• Stealthy attacks against CUSUM-based detectors and
particularly against the proposed algorithm are introduced
and analyzed.

• Several countermeasures are proposed against the consid-
ered stealthy attacks.

C. Organization

The remainder of the paper is organized as follows. In
Sec. II, the system model, attack models, state estimation

mechanism, and the problem formulation are presented. In
Sec. III, an online cyber-attack detection and estimation al-
gorithm is presented. In Sec. IV, stealthy attacks against
CUSUM-based detectors are introduced and analyzed. Also,
countermeasures against the considered stealthy attacks are
presented. In Sec. V, the proposed detection schemes are
evaluated extensively via simulations. Finally, the paper is
concluded in Sec. VI. Boldface letters denote vectors and
matrices, and all vectors are column vectors.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

The actual power grid is regulated based on a nonlinear
AC power flow model [2]. On the other hand, the approxi-
mate linearized (around an operating point) DC power flow
model is a good approximation that is widely used in the
literature to describe the operation of the power grid [10],
[16], [31]. Furthermore, static system model and consequently
conventional static (LS) state estimation are not effective in
capturing the dynamics of a power system due to time-varying
load and power generation [11]. In addition, attack detection
mechanisms based on static estimators are not effective in
detecting time-varying cyber-attacks and structured “stealth”
FDI attacks [10], for which dynamic state estimator-based
detectors are known to be effective [28], [32].

We then model the power grid, consisting of N + 1 buses
and K meters, as a discrete-time linear dynamic system based
on the commonly employed linear DC model [10], [16], [31]
as follows:

xt = Axt−1 + vt, (1)
yt = Hxt + wt, (2)

where xt = [x1,t, x2,t, . . . , xN,t]
T is the state vector denoting

the phase angles of N buses (one of the buses is considered
as a reference bus), A ∈ RN×N is the state transition matrix,
vt = [v1,t, v2,t, . . . , vN,t]

T ∼ N (0, σ2
v IN ) is the process

noise vector, IN is an N ×N identity matrix, and ·T is
the transpose operator. Further, yt = [yT

1,t,y
T
2,t, . . . ,y

T
K,t]

T

is the vector consisting of meter measurements, yk,t =
[yk,t,1, yk,t,2, . . . , yk,t,λ]T is the measurement vector for me-
ter k, H ∈ RKλ×N is the measurement matrix, wt =
[wT

1,t,w
T
2,t, . . . ,w

T
K,t]

T ∼ N (0, σ2
w IKλ) is the measurement

noise vector, and wk,t = [wk,t,1, wk,t,2, . . . , wk,t,λ]T is the
measurement noise vector for meter k. Note that in each time
interval between t− 1 and t, λ ∈ {1, 2, 3, . . . } measurements
are taken at each meter, where λ is usually small, and the
collected measurements between t − 1 and t are processed
at time t. To increase the measurement redundancy against
noise and also to estimate the unknown attack parameters more
reliably in case of a cyber-attack, λ needs to be chosen higher.

In general, the state transition and measurement matrices
can also be dynamic. For instance, due to changes in network
topology, i.e., on and off states of the switches and line
breakers in the power grid, the measurement matrix may vary
over time. In that case, instead of modeling the smart grid as
a linear time-invariant system as in (1) and (2), we can model
it as a linear time-varying system where we can replace A
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and H by At and Ht, respectively. The results presented in
this study can be generalized to the case of linear time-varying
system model as long as At and Ht are known by the system
controller at each time t.

B. Attack Models

We assume that at an unknown time τ , a cyber-attack is
launched to the system, where we particularly consider FDI
attacks, jamming attacks, and their combination. The attack
types, attack magnitudes, and the set of attacked meters can
be time-varying. But, during a time interval, i.e., between t−1
and t, we assume that the attack parameters stay constant.
Next, we explain the attack models under consideration.

1) FDI Attack: In case of an FDI attack, additive malicious
data are injected into the measurements of a subset of meters.
In practice, an FDI attack can be performed by manipulating
the network communication channels or hacking meters and/or
control centers in the smart grid [2], [8]. The measurement
model in case of an FDI attack takes the following form:

yt = Hxt + at + wt, t ≥ τ, (3)

where at = [aT1,t,a
T
2,t, . . . ,a

T
K,t]

T denotes the injected false
data at time t. Since the attack magnitudes are assumed to be
constant between t − 1 and t, for meter k, ak,t = 1λ×1 ak,t,
where 1λ×1 is a λ × 1 vector consisting of 1s. Note that if
meter k is not under an FDI attack at time t, then ak,t = 0,
otherwise ak,t 6= 0.

2) Jamming Attack: In case of a jamming attack, we as-
sume that the attacker constantly emits additive white Gaussian
noise (AWGN) to the network communication channels to
compromise a subset of meter measurements. We consider
jamming with AWGN since (i) it is a commonly employed
jamming model in the literature [33], [34], (ii) it is a simple
attacking strategy to perform, and (iii) in an additive noise
channel with Gaussian input, for a given mean and variance,
among all noise distributions, the Gaussian noise maximizes
the mean squared error of estimating the channel input given
the channel output [34], [35]. Hence, an attacker can jam the
communication channels with AWGN to maximize its damage
on the state estimation mechanism.

In case of a jamming attack, the measurement model can
be written as follows:

yt = Hxt + wt + nt, t ≥ τ, (4)

where nt = [nT
1,t,n

T
2,t, . . . ,n

T
K,t]

T ∼ N (0,diag(σσσt)) denotes
the jamming noise, σσσt = [σσσT

1,t,σσσ
T
2,t, . . . ,σσσ

T
K,t]

T, and σσσk,t =
1λ×1 σ

2
k,t where σ2

k,t is the variance of the jamming noise
targeting meter k at time t. If meter k is not under a jamming
attack at time t, then σ2

k,t = 0, otherwise σ2
k,t > 0.

3) Hybrid Attack: In case of a hybrid (combined) attack,
FDI and jamming attacks are simultaneously launched to the
system and hence the measurement model takes the following
form:

yt = Hxt + at + wt + nt, t ≥ τ. (5)

For meter k under both FDI and jamming attacks at time t,
ak,t 6= 0 and σ2

k,t > 0. Since the FDI and jamming attacks can

be considered as special cases of hybrid attacks, we consider
(5) as the measurement model under the attacking regime, i.e.,
for t ≥ τ .

Remark 1: If the noise terms in the normal system operation
are AWGN (as in (1) and (2)) and the jamming noise terms are
mutually independent over the meters, then the considered hy-
brid FDI/jamming attacks span all possible data attacks. This
is due to the fact that a Gaussian random variable is defined by
its mean and variance, and through the hybrid attacks, mean
and variance of the density of meter measurements can be
arbitrarily changed (cf. (5)). For instance, in case of a DoS
attack, meter measurements are blocked and only a random
or zero signal is received at the control center [9], [13], [14].
Hence, the DoS attack can be considered as a special case
of the hybrid cyber-attacks, i.e., a DoS attack can either be
equivalent to an FDI attack with false data being in the same
magnitude of the actual signal but with an opposite sign or a
jamming attack with high level noise variances such that the
actual signal can be neglected compared to the noise signal
[28]. On the other hand, if the jamming noise is correlated
over the meters or it is not normally distributed, then such an
attack does not comply with the considered jamming attack
model in (4) and nor with (5). For such cases, we consider a
non-parametric goodness-of-fit test as a countermeasure (see
Sec. IV-C.2).

C. Pre- and Post-Attack Measurement Densities

Let H = [HT
1 ,H

T
2 , . . . ,H

T
K ]T where Hk ∈ Rλ×N is

the measurement matrix for meter k. Since the measurement
matrix is determined based on the system topology, the rows
of Hk are identical, i.e., Hk = 1λ×1 h

T
k , where hT

k is a row
of Hk. Based on the considered post-attack model in (5), a
measurement obtained at meter k during the time interval
between t − 1 and t, i.e., yk,t,i, k ∈ {1, 2, . . . ,K}, i ∈
{1, 2, . . . , λ} can be written as

yk,t,i =


hT
k xt + wk,t,i, if k ∈ S0t

hT
k xt + ak,t + wk,t,i, if k ∈ Sft

hT
k xt + wk,t,i + nk,t,i, if k ∈ Sjt

hT
k xt + ak,t + wk,t,i + nk,t,i, if k ∈ Sf,jt

, t ≥ τ,

(6)
where S0t is the set of non-attacked meters, Sft is the set of
meters under only FDI attack, Sjt is the set of meters under
only jamming attack, and Sf,jt is the set of meters under both
FDI and jamming attacks at time t ≥ τ . Note that S0t , Sft ,
Sjt , and Sf,jt are disjoint sets and S0t ∪ S

f
t ∪ S

j
t ∪ S

f,j
t =

{1, 2, . . . ,K}.
Then, the probability density functions (pdfs) of the mea-

surements in the pre- and post-attack regimes take respectively
the following forms ∀i ∈ {1, 2, . . . , λ}:

yk,t,i ∼ N (hT
k xt, σ

2
w), ∀k ∈ {1, 2, . . . ,K}, t < τ, (7)
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and

yk,t,i ∼


N (hT

k xt, σ
2
w), ∀k ∈ S0t

N (hT
k xt + ak,t, σ

2
w), ∀k ∈ Sft

N (hT
k xt, σ

2
w + σ2

k,t), ∀k ∈ Sjt
N (hT

k xt + ak,t, σ
2
w + σ2

k,t), ∀k ∈ S
f,j
t

, t ≥ τ.

(8)

D. State Estimation

Since the smart grid is modeled as a discrete-time linear
dynamic system with the Gaussian noise terms (cf. (1) and
(2)), the Kalman filter is the optimal linear estimator in
minimizing the mean squared state estimation error [36].
Further, since the measurement models for the pre- and post-
attack periods are different (cf. (7) and (8)), two Kalman filters
need to be simultaneously employed: one for assuming no
attack occurs at all and one for assuming an attack occurs
at an unknown time τ . Since the latter involves the unknown
change-point τ and the unknown attack parameters at and
σσσt, estimates of these unknowns are needed to employ the
corresponding Kalman filter. As we will explain later, τ is
estimated by the detection algorithm, at and σσσt are estimated
via the maximum likelihood (ML) estimation.

The Kalman filter is an iterative real-time estimator com-
posed of prediction and measurement update steps at each
iteration. Let the Kalman filter estimates for the pre- and post-
attack cases be denoted with x̂0

t|t′ and x̂1
t|t′ , respectively where

t′ = t−1 and t′ = t for the prediction and measurement update
steps at time t, respectively. The Kalman filter equations at
time t are then given as follows:

Pre-attack – Prediction:

x̂0
t|t−1 = Ax̂0

t−1|t−1,

P0
t|t−1 = AP0

t−1|t−1A
T + σ2

v IN , (9)

Pre-attack – Measurement update:

G0
t = P0

t|t−1H
T(HP0

t|t−1H
T + σ2

w IKλ)−1,

x̂0
t|t = x̂0

t|t−1 + G0
t (yt −Hx̂0

t|t−1),

P0
t|t = P0

t|t−1 −G0
tHP0

t|t−1, (10)

Post-attack – Prediction:

x̂1
t|t−1 = Ax̂1

t−1|t−1,

P1
t|t−1 = AP1

t−1|t−1A
T + σ2

v IN , (11)

Post-attack – Measurement update:

G1
t = P1

t|t−1H
T(HP1

t|t−1H
T + σ2

w IKλ + diag(σ̂σσt))
−1,

x̂1
t|t = x̂1

t|t−1 + G1
t (yt −Hx̂1

t|t−1 − ât),

P1
t|t = P1

t|t−1 −G1
tHP1

t|t−1, (12)

where P0
t|t′ and P1

t|t′ denote the estimates of the state
covariance matrix at time t, and G0

t and G1
t denote the

Kalman gain matrices at time t for the pre- and post-attack
cases, respectively. Note that the MLE estimates of the attack
parameters are used in the measurement update step of the
Kalman filter for the post-attack case, where ât is the MLE
of at (cf. (26)) and σ̂σσt is the MLE of σσσt (cf. (27)). Hence,

x̂1
t|t−1 and x̂1

t|t are, in fact, recovered state estimates in case
of a cyber-attack. Note, however, that ML estimation errors
may lead to errors in computing the recovered state estimates.

E. Problem Formulation

Our objective is detecting cyber-attacks in a timely and
reliable manner and the quickest detection theory [37]–[39] is
well suited to this objective. In the quickest change detection
problems, measurements become available sequentially over
time and at each time, either a change is declared or further
measurements are taken in the next time interval, where the
aim is to optimally balance the detection delay and the false
alarm rate. There are two main approaches in the quickest
detection theory, namely Bayesian and non-Bayesian. In a
Bayesian setting, the change point τ is considered as a
random variable with a known a priori distribution whereas
in a non-Bayesian setting, the change point is considered
as non-random and unknown. Our problem better fits to the
non-Bayesian setting since we do not assume any a priori
knowledge about the change-point τ . Then, we consider the
following objective function, proposed by Lorden [40]:

d(T ) = sup
τ

ess sup
Fτ

Eτ
[
(T − τ)+ |Fτ

]
, (13)

where T is the stopping time at which an attack is declared,
Fτ denotes all measurements obtained up to time τ , and Ej
is the expectation under Pj , that is the probability measure
if the change occurs at time j. Note that d(T ) is called the
worst-case average detection delay since it is maximized over
the change point and also over all measurements obtained up
to the change-point. We then consider the following minimax
optimization problem:

inf
T

d(T ) subject to E∞[T ] ≥ α, (14)

where E∞[T ] is called the average false alarm period, i.e.,
average stopping time when no change occurs at all (τ =∞),
and α is a prespecified lower bound for E∞[T ].

Let the pre- and post-attack measurement pdfs given in
(7) and (8) be denoted with p0(yt|xt) and p1(yt|xt,at,σσσt),
respectively. Since the dynamic system state xt is not directly
observed and the attack parameters at and σσσt are completely
determined by an attacker and hence unknown, both pdfs are
unknown and time-varying. If the pre- and post-attack pdfs
would be exactly known, then the well-known CUSUM algo-
rithm would be the optimal solution to (14) [41]. Nonetheless,
the system state can be inferred using the Kalman filters and
the MLEs of the unknown attack parameters can be computed.
Then, following a generalized likelihood ratio approach [38,
Sec. 5.3], [26], [28] and replacing the unknowns with their
estimates, a generalized CUSUM algorithm can be used as a
solution to (14).

In this paper, in addition to early attack detection, we also
aim to recover the attack-free system states. Notice that in
case of no attack, i.e., for t < τ , the Kalman filter for the
pre-attack case (assuming no attack at all) is the optimal state
estimator. However, after an attack occurs, the measurement
model assumed in the pre-attack period (cf. (2)) is no longer
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true. Hence, the state estimates for the pre-attack case, i.e.,
x̂0
t|t−1 and x̂0

t|t, deviate from the actual system state xt for
t ≥ τ . Recalling that an attack occurs at an unknown time
τ and the measurements follow the post-attack measurement
model (cf. (5)) for t ≥ τ , if the attack launch time τ and
the attack magnitudes at and σσσt would be exactly known,
then the system state would be perfectly recovered for t ≥ τ .
Nonetheless, as we will explain more clearly in the next
section, the (generalized) CUSUM algorithm always keeps
a change-point estimate τ̂ in its memory and updates this
estimate as the measurements become sequentially available
over time [38, Sec. 2.2]. When an attack is declared at the
stopping time T , τ̂ becomes the final change-point estimate of
the (generalized) CUSUM algorithm. Furthermore, the MLEs
of the attack magnitudes, i.e., ât and σ̂σσt, can be computed
at each time t. Then, employing a Kalman filter for the
post-attack case (cf. (11) and (12)) and computing the state
estimates using the MLEs of the attack parameters in the
measurement update step, recovered state estimates, i.e., x̂1

t|t−1
and x̂1

t|t, can be obtained for τ̂ ≤ t ≤ T .

III. ONLINE ATTACK DETECTION AND ESTIMATION

Since it is hard to distinguish noise from FDI/jamming
attacks with small magnitudes, some minimum levels for the
attack magnitudes need to be defined in order to control the
false alarm level of a detection algorithm. We then define the
change event of interest as follows:

|ak,t| ≥ γ, ∀k ∈ Sft , t ≥ τ,
σ2
k,t ≥ σ2, ∀k ∈ Sjt , t ≥ τ,

|ak,t| ≥ γ & σ2
k,t ≥ σ2, ∀k ∈ Sf,jt , t ≥ τ, (15)

where γ and σ2 are the smallest attack magnitudes of interest
for |ak,t| and σ2

k,t, respectively. Note that, in general, an
attacker can arbitrarily choose its attack parameters, i.e., γ
and σ2 do not restrict an attacker’s strategy. In fact, attackers
usually do not know such parameters. On the other hand,
smarter attackers may exploit such lower bounds on the attack
magnitudes in order to perform stealthy attacks with small
attack magnitudes (see Sec. IV-B).

The generalized CUSUM algorithm can then be written
as in (16) (shown at the top of the next page) where x̂0

t

and x̂1
t denote the state estimates for the pre- and post-

attack cases, respectively, gm is the decision statistic at time
m, h is the test threshold, and βt is the generalized log-
likelihood ratio (GLLR) calculated at time t. Based on (16),
the decision statistic can be recursively updated at each time
t as gt ← max{0, gt−1 + βt}, where g0 = 0 [38, Sec. 2.2].

Note that whenever gt reaches zero, the (generalized)
CUSUM algorithm updates its change-point estimate τ̂ to the
current time t, where the initial change-point estimate is τ̂ = 1
[38, Sec. 2.2]. That is, when gt ← 0, we have τ̂ ← t. Recall
that the Kalman filter for the post-attack case is employed
assuming the normal measurement model (cf. (2)) up to the
unknown change-point τ . We then propose to employ the
Kalman filter for the post-attack case based on the estimated
change-point τ̂ . Hence, whenever the change-point estimate
is updated, the Kalman filter for the post-attack case needs

also to be updated. Recall further that the Kalman filter for
the pre-attack case is always employed based on the normal
measurement model. Hence, whenever gt ← 0, the Kalman
filter estimates for the post-attack case are updated by setting
them to the Kalman filter estimates for the pre-attack case,
i.e., P1

t|t ← P0
t|t and x̂1

t|t ← x̂0
t|t.

Assuming no attack, x̂0
t|t is the optimal state estimate at

time t. Thus, we estimate xt by x̂0
t|t for the pre-attack case,

i.e., x̂0
t , x̂0

t|t. On the other hand, we estimate xt by x̂1
t|t−1

for the post-attack case, i.e., x̂1
t , x̂1

t|t−1. This is because
the measurement update step of the Kalman filter for the
post-attack case and hence x̂1

t|t depends on estimates of the
unknown attack variables (cf. (12)), and effects of the attack
parameters at and σσσt at time t on x̂1

t need to be blocked to be
able to compute the MLEs of the attack parameters in closed
form (cf. numerator in (16)). Note that x̂1

t|t−1 is computed
based on the measurements up to time t − 1, thus x̂1

t|t−1 is
independent of the attack parameters at time t.

At first, it may seem unfair that we use the state estimate
of the measurement update step, i.e., x̂0

t|t, for the pre-attack
case, and the state prediction, i.e., x̂1

t|t−1, for the post-attack
case. However, it essentially improves the performance of the
proposed detection scheme due to the following reasons: (i) in
case of no attack, we favor p0(yt|x̂0

t ) over p1(yt | x̂1
t ,at,σσσt)

and hence decrease the false alarm level of the proposed
detection scheme, (ii) in case of an attack, since the state
estimates for the post-attack case are recovered whereas the
state estimates for the pre-attack case do not have a recovery
mechanism, detection delays are not expected to increase.

Furthermore, based on (16), the following proposition
presents the GLLR at time t and the MLEs of the attack
variables for the time interval between t− 1 and t.

Proposition 1: Let ek,t,i , yk,t,i − hT
k x̂

1
t and ek,t ,

[ek,t,1, ek,t,2, . . . , ek,t,λ]T. Moreover, let δk,t ,
∑λ
i=1 ek,t,i,

ζk,t ,
∑λ
i=1 e

2
k,t,i, %k,t ,

∑λ
i=1(ek,t,i + γ)2, and

$k,t ,
∑λ
i=1(ek,t,i − γ)2, ∀k ∈ {1, 2, . . . ,K}, ∀t > 0.

The most likely subset of meters under no attack, under only
FDI attack, under only jamming attack, and under both FDI
and jamming attacks during the time interval between t − 1
and t are classified, respectively as

Ŝ0t =
{
k : u0(ek,t) ≤ uf (ek,t), u

0(ek,t) ≤ uj(ek,t),

u0(ek,t) ≤ uf,j(ek,t), k = 1, 2, . . . ,K
}
, (17)

Ŝft =
{
k : uf (ek,t) < u0(ek,t), u

f (ek,t) ≤ uj(ek,t),

uf (ek,t) ≤ uf,j(ek,t), k = 1, 2, . . . ,K
}
, (18)

Ŝjt =
{
k : uj(ek,t) < u0(ek,t), u

j(ek,t) < uf (ek,t),

uj(ek,t) ≤ uf,j(ek,t), k = 1, 2, . . . ,K
}
, (19)

Ŝf,jt =
{
k : uf,j(ek,t) < u0(ek,t), u

f,j(ek,t) < uf (ek,t),

uf,j(ek,t) < uj(ek,t), k = 1, 2, . . . ,K
}
, (20)
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T = inf

{
m ∈ N : max

1≤j≤m

m∑
t=j

sup
S0
t ,S

f
t ,S

j
t ,S

f,j
t

log
sup|ak,t|≥γ, k∈Sft ∪S

f,j
t

supσ2
k,t≥σ2, k∈Sjt ∪S

f,j
t

p1(yt | x̂1
t ,at,σσσt)

p0(yt|x̂0
t )︸ ︷︷ ︸

βt︸ ︷︷ ︸
gm

≥ h
}
,

(16)

and the GLLR at time t is computed as

βt =
Kλ

2
log(σ2

w) +
1

2σ2
w

K∑
k=1

λ∑
i=1

(yk,t,i − hT
k x̂

0
t )

2

− 1

2

( ∑
k∈Ŝ0

t

u0(ek,t) +
∑
k∈Ŝft

uf (ek,t)

+
∑
k∈Ŝjt

uj(ek,t) +
∑
k∈Ŝf,jt

uf,j(ek,t)

)
, (21)

where

u0(ek,t) , λ log(σ2
w) +

ζk,t
σ2
w

, (22)

uf (ek,t) ,
λ log(σ2

w) + 1
σ2
w

∑λ
i=1(ek,t,i − δk,t

λ )2, if | δk,tλ | ≥ γ
λ log(σ2

w) +
$k,t
σ2
w
, if 0 ≤ δk,t

λ < γ

λ log(σ2
w) +

%k,t
σ2
w
, if − γ < δk,t

λ < 0,

(23)

uj(ek,t) ,

{
λ log(

ζk,t
λ ) + λ, if ζk,t

λ ≥ σ
2
w + σ2

λ log(σ2
w + σ2) +

ζk,t
σ2
w+σ2 , if ζk,t

λ < σ2
w + σ2,

(24)

and uf,j(ek,t) is as given in (25). Furthermore, the MLEs of
the attack magnitudes for meter k ∈ {1, 2, . . . ,K} and for the
interval between t− 1 and t are determined as follows:

âk,t =


δk,t
λ , if | δk,tλ | ≥ γ and k ∈ Ŝft ∪ Ŝ

f,j
t

γ, if 0 ≤ δk,t
λ < γ and k ∈ Ŝft ∪ Ŝ

f,j
t

−γ, if − γ < δk,t
λ < 0 and k ∈ Ŝft ∪ Ŝ

f,j
t

0, if k ∈ Ŝ0t ∪ Ŝ
j
t ,

(26)

and σ̂2
k,t is as given in (27).

Proof: The proof is presented in [42, Proof of Proposition
1].

The proposed online detection and estimation algorithm
is summarized in Algorithm 1. At each time t, firstly the
prediction step of the Kalman filters is implemented. Then, the
most likely attack type (or no attack) and the attack parameters
for each meter are determined. Based on the estimates of the
attack variables, the measurement update step of the Kalman
filters is implemented. Then, the GLLR is computed and the
decision statistic is updated. If the decision statistic crosses
the predetermined test threshold, then an attack is declared.
Otherwise, it proceeds to the next time interval and further
measurements are collected. Moreover, if the decision statistic
reaches zero, the Kalman filter estimates for the post-attack

Algorithm 1 Real-time attack detection and estimation

1: Initialization: t← 0, g0 ← 0, τ̂ ← 1

2: while gt < h do
3: t← t+ 1

4: Implement the prediction step of the Kalman filters using (9)
and (11).

5: Compute u0(ek,t), u
f (ek,t), u

j(ek,t), and uf,j(ek,t), ∀k ∈
{1, 2, . . . ,K} using (22), (23), (24), and (25), respectively.

6: Classification: compute Ŝ0
t , Ŝft , Ŝ

j
t , and Ŝf,jt using (17), (18),

(19), and (20), respectively.
7: Compute ât and σ̂σσt using (26) and (27), respectively.
8: Implement the measurement update step of the Kalman filters

using (10) and (12).
9: Compute βt using (21).

10: Update the decision statistic: gt ← max{0, gt−1 + βt}
11: if gt = 0 then
12: τ̂ ← t

13: x̂1
t|t ← x̂0

t|t
14: P1

t|t ← P0
t|t

15: end if
16: end while
17: T ← t, declare a cyber-attack.

case are updated before proceeding to the next time interval.
Recall that Algorithm 1 keeps a change point estimate τ̂ .
Hence, after an attack is declared at time T , to help for a
quick system recovery, {x̂1

t|t : τ̂ ≤ t ≤ T} can be reported
as the recovered state estimates and further, estimates of the
attack types and the set of attacked meters can be reported for
the time interval between τ̂ and T .

Remark 2: The detector parameters γ and σ2 can be
determined by the system designer based on the system
requirements, i.e., the desired level of false alarm rate. The
system designer firstly determines the desired minimum level
of average false alarm period, i.e., α. If the frequency of false
alarms needs to be decreased, then α is chosen higher. After
choosing α, the system designer chooses the values of γ, σ2,
and the test threshold h in order to achieve an average false
alarm period that is larger than or equal to α. For a higher
level of α, higher values of γ, σ2, and h need to be chosen.
On the other hand, higher values of γ, σ2, and h lead to larger
detection delays. Hence, the system designer can choose such
parameters to strike a desired balance between false alarm rate
and the detection delays.

IV. STEALTHY ATTACKS AND COUNTERMEASURES

We firstly discuss stealthy attacks against a CUSUM detec-
tor, which can be employed in a simple case where the pre- and
post-attack pdfs are known. Discussion on the stealthy attacks
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uf,j(ek,t) ,



λ log( 1
λ

∑λ
i=1(ek,t,i − δk,t

λ )2) + λ, if | δk,tλ | ≥ γ and 1
λ

∑λ
i=1(ek,t,i − δk,t

λ )2 ≥ σ2
w + σ2

λ log(σ2
w + σ2) + 1

σ2
w+σ2

∑λ
i=1(ek,t,i − δk,t

λ )2, if | δk,tλ | ≥ γ and 1
λ

∑λ
i=1(ek,t,i − δk,t

λ )2 < σ2
w + σ2

λ log(
$k,t
λ ) + λ, if 0 ≤ δk,t

λ < γ and $k,t
λ ≥ σ2

w + σ2

λ log(σ2
w + σ2) +

$k,t
σ2
w+σ2 , if 0 ≤ δk,t

λ < γ and $k,t
λ < σ2

w + σ2

λ log(
%k,t
λ ) + λ, if − γ < δk,t

λ < 0 and %k,t
λ ≥ σ

2
w + σ2

λ log(σ2
w + σ2) +

%k,t
σ2
w+σ2 , if − γ < δk,t

λ < 0 and %k,t
λ < σ2

w + σ2.

(25)

σ̂2
k,t =



−σ2
w +

ζk,t
λ , if ζk,t

λ ≥ σ
2
w + σ2 and k ∈ Ŝjt

σ2, if ζk,t
λ < σ2

w + σ2 and k ∈ Ŝjt
−σ2

w + 1
λ

∑λ
i=1(ek,t,i − δk,t

λ )2, if | δk,tλ | ≥ γ and 1
λ

∑λ
i=1(ek,t,i − δk,t

λ )2 ≥ σ2
w + σ2 and k ∈ Ŝf,jt

σ2, if | δk,tλ | ≥ γ and 1
λ

∑λ
i=1(ek,t,i − δk,t

λ )2 < σ2
w + σ2 and k ∈ Ŝf,jt

−σ2
w +

$k,t
λ , if 0 ≤ δk,t

λ < γ and $k,t
λ ≥ σ2

w + σ2 and k ∈ Ŝf,jt
σ2, if 0 ≤ δk,t

λ < γ and $k,t
λ < σ2

w + σ2 and k ∈ Ŝf,jt
−σ2

w +
%k,t
λ , if − γ < δk,t

λ < 0 and %k,t
λ ≥ σ

2
w + σ2 and k ∈ Ŝf,jt

σ2, if − γ < δk,t
λ < 0 and %k,t

λ < σ2
w + σ2 and k ∈ Ŝf,jt

0, if k ∈ Ŝ0t ∪ Ŝ
f
t .

(27)

against a CUSUM detector is useful since similar forms of
stealthy attacks can be performed against all CUSUM-based
detectors. We then particularly discuss stealthy attacks against
the proposed detector, i.e., Algorithm 1, where the pre- and
post-attack pdfs are unknown and time-varying, as explained
in Sec. III. Finally, we present some countermeasures against
the considered stealthy attacks.

A. Stealthy Attacks Against a CUSUM Detector

Suppose the pre- and post-attack measurement pdfs are
known and denoted with f0 and f1, respectively such that
yt ∼ f0 for t < τ and yt ∼ f1 for t ≥ τ . In this case, the
CUSUM algorithm is the optimum solution to (14) [41], given
by

TCUSUM = inf{t : gt ≥ h}, gt = max{0, gt−1 + `t}, (28)

where TCUSUM denotes the stopping time, h is the test thresh-
old, gt is the decision statistic at time t, and `t , log

( f1(yt)
f0(yt)

)
is the log-likelihood ratio (LLR) at time t.

1) Non-persistent attacks: The CUSUM algorithm is
mainly designed for detecting persistent changes, i.e., it is
assumed that an attack is launched at an unknown time
τ and continued thereafter. It accumulates evidence (LLR)
over time and declares a change (attack/anomaly) only if the
accumulated evidence is reliably high (cf. (28)). Hence, with
the purpose of increasing the detection delay of the CUSUM
algorithm, a smart attacker can design an on-off attacking
strategy to perform an intermittent (non-persistent) attack. That
is, it can attack for a period of time, then wait for a period
of time and repeat this procedure over its attacking period
with the aim of keeping the decision statistic of the CUSUM
algorithm, i.e., gt, below the decision threshold h for t ≥ τ
so that the attack can be continued without being noticed.

Since the measurements yt are essentially random variables,
an attacker cannot control the decision statistic deterministi-
cally; it can control it only on average. Note that attackers

usually need simple and effective attacking strategies that
require the minimum possible knowledge. Let KL(f1, f0) ,∫
f1(y) log( f1(y)f0(y)

)dy denote the Kullback-Leibler (KL) diver-
gence between f1 and f0. The following proposition presents
a simple necessary condition for an attacker, having the
knowledge of f0 and f1, to determine the on and off periods of
a non-persistent stealthy attack against the CUSUM detector.

Proposition 2: Let h′ ≥ KL(f1, f0) be a threshold chosen
by the attacker. The on and off periods have to be chosen as

Ton ≤
h′

KL(f1, f0)
and Toff >

h′

KL(f0, f1)

in order to satisfy E[gt] ≤ h′ for t ≥ τ , where Ton and Toff are
positive integers denoting the on and off periods, respectively.

Proof. We have

E[gt] = E[max{0, gt−1 + `t}]
≥ max{0,E[gt−1 + `t]} = max{0,E[gt−1] + E[`t]},

(29)

where the inequality is due to the fact that gt−1 + `t can take
negative values in general (−∞ < `t <∞).

If yt ∼ f1, then

E[`t] =

∫
f1(y) log(

f1(y)

f0(y)
)dy = KL(f1, f0) > 0,

and if yt ∼ f0, then

E[`t] =

∫
f0(y) log(

f1(y)

f0(y)
)dy = −KL(f0, f1) < 0.

Let

ρt , max{0,E[gt−1] + E[`t]} (30)

be a lower bound on E[gt] (cf. (29)). Since (i) gt = 0 at
t = 0 (hence, E[g0] = 0) and (ii) for t ≤ τ − 1, E[`t] =
−KL(f0, f1) < 0, based on (30), we have ρt = 0 for t ≤
τ − 1. Further, based on (30), with an on period of Ton =
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h′/KL(f1, f0) (when yt ∼ f1) and an off period of Toff =
h′/KL(f0, f1) (when yt ∼ f0), we have 0 ≤ ρt ≤ h′ for
t ≥ τ .

Since ρt is a lower bound for E[gt] for t > 0, in order to
satisfy E[gt] ≤ h′ for t ≥ τ , the on period needs to be chosen
smaller than h′/KL(f1, f0) and/or the off period needs to be
chosen larger than h′/KL(f0, f1).

For a stealthy attack, the attacker needs to choose h′ such
that h′ < h. Further, ∆ , h−h′ can be considered as a margin
for non-detectability. That is, as ∆ increases, gt, t ≥ τ takes
smaller values on average, that increases the average detection
delay of the CUSUM algorithm. Based on Proposition 2, the
average on (attacking) period is upper bounded with

T̄on ,
Ton

Ton + Toff
<

KL(f0, f1)

KL(f1, f0) + KL(f0, f1)
.

Note that the upper bound on T̄on is independent of h′ and
hence of ∆. However, for a higher T̄on, either Ton needs to
be increased or Toff needs to be decreased, that both increases
E[gt], t ≥ τ and hence decreases the average detection delay.
Further, note that a stealthy attack can especially be effective if
the system has strict false alarm constraints, i.e., requiring high
level of false alarm periods and equivalently a high threshold
h.

2) Persistent attacks: The CUSUM algorithm may not be
effective in attack detection if the attack does not comply
with the presumed attack model. If an attacker knows that
the CUSUM detector is employed based on the post-attack
pdf f1, then it can perform a stealthy persistent attack with a
post-attack density f ′1 6= f1. The design goal can be keeping
f ′1 as closest as possible to the post-attack pdf f1 for a strong
attack while limiting the risk of being detected. Since the
attack is of persistent nature, f ′1 needs to be designed such
that the decision statistic of the CUSUM algorithm does not
increase on average over time. Since the CUSUM algorithm
accumulates the LLRs over time (cf. (28)), the LLR can be
designed such that it takes non-positive values on the average,
i.e., E[`t] ≤ 0, t > 0. Then, since E[`t] = −KL(f0, f1) < 0
for t ≤ τ − 1, the condition E[`t] ≤ 0, t ≥ τ needs to
be satisfied. Considering the KL divergence KL(f ′1, f1) as
the information distance between f ′1 and f1, the following
optimization problem can be considered:

min
f ′
1

KL(f ′1, f1) subject to E[`t] ≤ 0, t ≥ τ, (31)

where the solution is presented in the following proposition.
Proposition 3: The solution of (31) is given by

{f ′1 : KL(f ′1, f0) = KL(f ′1, f1)}. (32)

Proof. Let yt ∼ f ′1 for t ≥ τ . Then,

E[`t] =

∫
f ′1(y) log

(f1(y)

f0(y)

)
dy

=

∫
f ′1(y) log(f1(y))dy −

∫
f ′1(y) log(f0(y))dy

=

∫
f ′1(y) log(f1(y))dy −

∫
f ′1(y) log(f ′1(y))dy

+

∫
f ′1(y) log(f ′1(y))dy −

∫
f ′1(y) log(f0(y))dy

=

∫
f ′1(y) log

(f1(y)

f ′1(y)

)
dy +

∫
f ′1(y) log

(f ′1(y)

f0(y)

)
dy

= −KL(f ′1, f1) + KL(f ′1, f0).

Then, the constraint in (31), i.e., E[`t] ≤ 0, implies that
−KL(f ′1, f1) + KL(f ′1, f0) ≤ 0, which is equivalent to
KL(f ′1, f1) ≥ KL(f ′1, f0). Hence, the minimum value of
KL(f ′1, f1) is KL(f ′1, f0).

Proposition 3 presents a simple strategy for an attacker
to perform a persistent stealthy attack against a CUSUM
detector. As an example, let f0 ∼ N ([µ0 µ0]T, σ2 I2) and
f1 ∼ N ([µ1 µ1]T, σ2 I2). If

f ′1 ∼ N
([

1
2 (µ0+µ1)
1
2 (µ0+µ1)

]
,
[
σ2 ϕ

ϕ σ2

])
,

then it can be checked that

KL(f ′1, f0) = KL(f ′1, f1)

=
1

4σ2
(µ1 − µ0)2 +

1

2
log
( σ4

σ4 − ϕ2

)
,

where the correlation term ϕ can be chosen such that σ4 −
ϕ2 > 0.

B. Stealthy Attacks Against Algorithm 1

In the actual problem under consideration, the pre- and post-
attack measurement pdfs, i.e., p0(yt|xt) and p1(yt|xt,at,σσσt),
are based on some unknown and time-varying variables and
hence the results in the previous subsection do not directly
apply. The proposed algorithm estimates the pre- and post-
attack pdfs at time t as p0(yt|x̂0

t ) and p1(yt|x̂1
t , ât, σ̂σσt),

respectively where x̂0
t and x̂1

t are computed via the Kalman
filters, ât is given in (26), and σ̂σσt is given in (27). Then, the
GLLR at time t is computed as follows (cf. (16)):

βt = log
(p1(yt|x̂1

t , ât, σ̂σσt)

p0(yt|x̂0
t )

)
. (33)

Note that computing x̂0
t and x̂1

t requires the knowledge
of all previously taken measurements, i.e., {yj , j ≤ t}.
Hence, for an attacker, estimating the pre- and post-attack pdfs
and hence computing βt and gt requires monitoring all the
system-wide measurements at all times, which is practically
infeasible. Although determining the online attack parameters
for a stealthy attack is difficult in general, we provide below a
brief analysis of the proposed algorithm and discuss possible
stealthy attacks against it based on this analysis and the intu-
itions gained in Sec. IV-A. As before, since the measurements
are random, an attacker can control the decision statistic only
on the average.

Firstly, based on (33), βt depends on how close (relatively)
the state estimates x̂0

t and x̂1
t to the actual system state xt

and how accurate the MLEs of the attack magnitudes ât and
σ̂σσt compared to the actual attack magnitudes at and σσσt are.
During the pre-attack period, the measurements yt follow the
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normal measurement model (2) and hence at = 0 and σσσt = 0.
Since x̂0

t is computed assuming no attack, for t ≤ τ − 1,
x̂0
t is usually a better estimate of the actual system state xt

compared to x̂1
t due to the possible ML estimation errors in

computing ât, σ̂σσt, and x̂1
t (recall that (cf. (12)) x̂1

t is computed
based on ât and σ̂σσt). Then, p0(yt|x̂0

t ) is expected to fit better
to yt compared to p1(yt|x̂1

t , ât, σ̂σσt), i.e., we usually have
p0(yt|x̂0

t ) ≥ p1(yt|x̂1
t , ât, σ̂σσt) for t ≤ τ − 1. Then, based

on (33), βt is expected to take nonpositive values in general,
that makes gt ≈ 0 a good approximation for t ≤ τ − 1.

The main aim of an attacker against the smart grid is
deviating the state estimates from the actual system state as
much as possible without being detected. Hence, it needs to
keep gt below the level of h as long as possible for t ≥ τ
(cf. (16)). Similar to the stealthy attacks against the CUSUM
algorithm discussed in Sec. IV-A, an attacker can either follow
an on-off attacking strategy or perform persistent attacks that
do not comply with the presumed attack magnitudes (cf. (15)).
Note that in case of an attack, i.e., for t ≥ τ , x̂0

t deviates from
xt since it is computed assuming no attack. On the other hand,
x̂1
t is a recovered state estimate, but it is subject to possible

ML estimation errors.
1) Non-persistent attacks: Since Algorithm 1 is a CUSUM-

based detector, stealthy intermittent (on-off) attacking can
be performed against it. Specifically, during the on periods,
an attacker can choose its attack magnitudes comparable to
or larger than the presumed lower bounds on the attack
magnitudes, i.e., γ and σ2, with the purpose of a strong attack.
However, as explained before, analytically deriving the on-off
periods and the online attack magnitudes seems infeasible for
an attacker. Hence, a smart attacker, having the knowledge
of system and detector parameters, can determine its attack
parameters based on an offline simulation.

When the attack complies with the presumed attack magni-
tudes, during an on period, x̂0

t usually deviates from the actual
system state more than x̂1

t due to the recovery mechanism in
computing x̂1

t (cf. (12)). That makes p1(yt|x̂1
t , ât, σ̂σσt) a better

fit to yt compared to p0(yt|x̂0
t ) on the average. Then, if an

on-off attack is performed, during the on periods, based on
(33), usually βt takes non-negative values and gt increases.
Further, at the beginning of an off period after an on period,
although the attack magnitudes are zero, i.e., at = σσσt = 0,
since x̂1

t is still a better (recovered) state estimate compared
to x̂0

t , p1(yt|x̂1
t , ât, σ̂σσt) can still be a better fit to yt and gt

may further increase. Note that during an off period, x̂0
t is not

expected to deviate further since yt now follows the normal
measurement model. On the other hand, ât, σ̂σσt, and x̂1

t are
still subject to possible ML estimation errors. That may make
p0(yt|x̂0

t ) a better fit to yt over time and as the off period
is continued, βt may start to take nonpositive values on the
average. Since gt is expected to increase in an on period as
well as in the beginning of an off period, the level of attack
magnitudes during the on periods needs to be carefully chosen
in accordance with the aim of keeping the highest value of gt
below the decision threshold h, for t ≥ τ .

2) Persistent attacks: Since Algorithm 1 relies on the
lower bounds γ and σ2 defined on the attack magnitudes (cf.
(15)), an attacker can perform persistent stealthy attacks using

significantly small attack magnitudes compared to γ and σ2 so
that Algorithm 1 becomes ineffective to detect such attacks.
In case of such small-magnitude stealthy attacks, the attack
magnitudes at and σσσt are close to zero for t ≥ τ and due to
the possible ML estimation errors in computing ât and σ̂σσt, x̂1

t

usually deviates more compared to x̂0
t , similarly to the pre-

attack period discussed before. Then, p0(yt|x̂0
t ) fits better to

yt compared to p1(yt|x̂1
t , ât, σ̂σσt) on the average. Hence, in

case of a persistent small-magnitude attack, based on (33),
βt usually takes nonpositive values and the approximation
gt ≈ 0 can still be valid. Note that even if an attacker
has an incomplete knowledge about the system and detector
parameters, it can still perform stealthy attacks with small
attack magnitudes. Although such small-magnitude attacks
have minimal effects on the system performance in the short
run, they can be effective over long periods of time. Hence,
they need to be detected with reasonable detection delays.

C. Countermeasures Against Stealthy Attacks

We firstly discuss countermeasures against the on-off at-
tacking strategy, i.e., the non-persistent stealthy attacks. We
then discuss a countermeasure against the persistent stealthy
attacks where the attacks may not comply with the presumed
attack model/magnitudes. Finally, we propose a new detec-
tion scheme, i.e., Algorithm 2, that simultaneously employs
Algorithm 1 and the proposed countermeasures with the aim
of being effective against a diverse range of potential cyber-
attacks.

1) Countermeasures against the non-persistent stealthy at-
tacks: Timely detection of cyber-attacks against the smart grid
is crucial since any failure may quickly spread over the net-
work. Hence, in practice, detection delays cannot be allowed to
be arbitrarily large. Note that the optimization problem stated
in (14) does not impose any constraints on the maximum
tolerable detection delay. In an alternative quickest detection
problem considered in [43], the objective is maximizing the
probability of detection in at most η time units after an attack
occurs, where τ ≤ T < τ + η needs to be satisfied for a
successful detection.

In the extreme case of the considered non-persistent stealthy
attacks, the attacker can choose its on period as Ton = 1.
In such a case, the attack needs to be detected using the
measurements obtained during a single time interval in the
attacking regime and hence η = 1 needs to be chosen. Then,
we consider the following optimization problem, proposed in
[43]:

sup
T

p(T ) subject to E∞[T ] ≥ α, (34)

where

p(T ) = inf
τ

ess inf
Fτ

Pτ
(
T = τ |Fτ , T ≥ τ

)
is the worst-case (in the Lorden’s sense) detection probability
after obtaining the first measurements in the attacking regime.

Shewhart Test: In case the pre- and post-attack pdfs are
known as in Sec. IV-A, the optimum solution to (34) is the
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Shewhart test [43, Theorem 2.3], given by

TS = inf{t : `t ≥ ν}, (35)

where TS denotes the stopping time and the threshold ν is
determined such that P∞(`1 ≥ ν) = 1/α. Note that the
Shewhart test in (35) is, in fact, the repeated log-likelihood
ratio test (LLRT), i.e., at each time, the LLR is compared with
a certain threshold and an alarm is triggered at the first time
the LLR crosses the threshold. We then propose the Shewhart
test as a countermeasure to the non-persistent stealthy attacks
against the CUSUM detector. Note that ν needs to be chosen
sufficiently high to prevent frequent false alarms.

Generalized Shewhart Test: In case the pre- and post-
attack pdfs are unknown and time-varying, we can only com-
pute the GLLR βt. Hence, as a countermeasure, we propose
to employ the generalized Shewhart test, i.e., the repeated
generalized LLRT (GLLRT), given by

T ′ = inf{t : βt ≥ φ}, (36)

where T ′ is the stopping time and φ is the test threshold.
Again, a sufficiently high threshold needs to be chosen to
prevent frequent false alarms. Moreover, similar to Algorithm
1, by choosing higher γ and/or σ2, false alarm rate of the
generalized Shewhart test can be reduced (see Remark 2).

Note that the generalized Shewhart test is expected to
be mainly effective in detecting significant instantaneous in-
creases in the level of GLLR and hence in detecting non-
persistent stealthy attacks during the on periods. That is, even
if an attack may be missed by Algorithm 1 since the decision
statistic gt may not achieve reliably high values for t ≥ τ due
to the subsequent off period after an on period, the generalized
Shewhart test can detect such non-persistent increases during
the on periods.

2) A countermeasure against the persistent stealthy attacks:
Non-parametric detection techniques do not assume any at-
tack models and only evaluate the deviation of measurement
statistics from the baseline (no attack) statistics. However,
they are usually less effective if the attacks comply with the
presumed attack models. As explained before, a persistent
stealthy attack can be performed if an attack does not match
the considered attack models or magnitudes. For such cases,
parametric detectors such as Algorithm 1 and the generalized
Shewhart test become ineffective and the non-parametric de-
tection techniques become more appropriate.

In case of no attack, i.e., for t < τ , ct , rt
TQt

−1rt is a
chi-square random variable with Kλ degrees of freedom [18],
where rt denotes the measurement innovation signal at time
t, given as

rt , yt −Hx̂0
t|t−1,

and Qt is the measurement prediction covariance matrix at
time t, calculated as follows:

Qt , HPt|t−1H
T + σ2

w IKλ.

Notice that although the distribution of the measurements yt
is time-varying and unknown due to the dynamic system state
xt, the distribution of ct is time-invariant and known in case

of no attack, i.e., for t < τ . Hence, whether the sequence {ct}
fits to the chi-squared distribution or not can be evaluated via
a goodness-of-fit test and if not, an attack/anomaly is declared.

Sliding-Window Chi-Squared Test: We partition the range
of ct, i.e., [0,∞), into M mutually exclusive and disjoint
intervals Ij , j = 1, 2, . . . ,M such that p1 = P (ct ∈ I1),
p2 = P (ct ∈ I2), . . . , pM = P (ct ∈ IM ). Hence,
p1, p2, . . . , pM denote the probabilities that ct belongs to
the intervals I1, I2, . . . , IM , respectively for t < τ , where∑M
j=1 pj = 1. The intervals I1, I2, . . . , IM can be deter-

mined using the cumulative distribution function (cdf) of a
chi-squared random variable with Kλ degrees of freedom.
Then, the null hypothesis is that ct belongs to the intervals
I1, I2, . . . , IM with probabilities p1, p2, . . . , pM , respectively.

We propose to employ an online test to evaluate whether
the most recent sliding window of ct’s fits to the null hy-
pothesis. Let the size of the sliding window be L. Then,
the sliding window at time t, denoted with Wt, consists of
{cj : t − L + 1 ≤ j ≤ t}. Let the number of samples in Wt

belonging to the predetermined disjoint intervals be denoted
with N1,t, N2,t, . . . , NM,t, respectively where

∑M
i=1Ni,t =

L,∀t. Since we have a multinomial distribution where the
expected number of samples in the disjoint intervals are
Lp1, Lp2, . . . , LpM , respectively, the Pearson’s chi-squared
test can be used to evaluate the goodness of fit, that can be
written as

T ′′ = inf{t : χt ≥ ϕ}, (37)

where

χt =

M∑
i=1

(Ni,t − Lpi)2

Lpi
(38)

is the asymptotically (as L → ∞) chi-squared distributed
test statistic with M − 1 degrees of freedom under the null
hypothesis, ϕ is the test threshold that can be determined
using the cdf of a chi-squared random variable for a desired
significance level, and T ′′ denotes the stopping time. To
improve the accuracy of the detector, M can be chosen higher.
Note, however, that as M is increased, the window size L
needs also to be increased to improve the reliability of the
goodness-of-fit test, that will cause larger detection delays.

The chi-squared test does not assume any attack model a pri-
ori and it only evaluates deviation of observed measurements
from the baseline statistics corresponding to the normal system
operation. We propose to use the chi-squared test to have a de-
tection scheme that is robust against (i) low-magnitude stealthy
attacks that corresponds to small deviations from the baseline
for which our proposed parametric detectors (Algorithm 1 and
the generalized Shewhart test) become ineffective to detect,
and (ii) attacks that do not comply with the presumed hybrid
attack model, e.g., non-Gaussian or correlated jamming noise.

Remark 3: The proposed chi-squared test is a sequential
version of the Pearson’s chi-squared test since the most recent
sliding window of samples is used in the test. Furthermore, the
proposed test is different from the outlier detector in [18], that
makes sample by sample decisions, i.e., it declares a single
sample as either normal and anomalous. The proposed test
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Algorithm 2 Real-time detection of hybrid and stealthy attacks

1: Initialization: t ← 0, g0 ← 0, τ̂ ← 1, choose the entries of
the initial sliding window of the chi-squared test, i.e., W0, as
realizations of a chi-squared random variable with Kλ degrees
of freedom.

2: while gt < h and βt < φ and χt < ϕ do
3: t← t+ 1

4: Implement the lines 4–15 in Algorithm 1.
5: rt ← yt −Hx̂0

t|t−1

6: Qt ← HPt|t−1H
T + σ2

w IKλ
7: ct ← rt

TQt
−1rt

8: Update Wt with the most recent entry ct.
9: Update N1,t, N2,t, . . . , NM,t and compute χt using (38).

10: end while
11: T̃ ← t, declare a cyber-attack.

is thus more reliable and more sensitive to small deviations
from the baseline since it considers long-term deviations by
evaluating a sliding window of samples.

3) Proposed final detection scheme: Our aim is to obtain
a detection mechanism that is effective against a significantly
wide range of cyber-attacks. Hence, we propose to simultane-
ously employ Algorithm 1, the generalized Shewhart test, and
the sliding-window chi-squared test and declare an attack at
the first time instant one of the detectors declares an attack (if
any). Hence,

T̃ = inf{T, T ′, T ′′}

is the proposed stopping time. We summarize the proposed
detector in Algorithm 2. Note that the average false alarm
period of Algorithm 2 is less than the minimum of the
(individual) average false alarm periods of Algorithm 1, the
generalized Shewhart test, and the sliding-window chi-squared
test. Hence, sufficiently high thresholds, i.e., h, φ and ϕ, need
to be chosen to prevent frequent false alarms. Furthermore, to
have the same average false alarm periods α for Algorithms 1
and 2, the threshold h needs to be chosen higher in Algorithm
2 and the thresholds φ and ϕ need to be chosen such that
the individual average false alarm periods of the generalized
Shewhart test and the sliding-window chi-squared tests are
greater than α.

V. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
detection schemes via simple case studies in an IEEE-14 bus
power system, where K = 23 and N = 13. The system matrix
A is chosen to be an identity matrix, the measurement matrix
H is determined based on the IEEE-14 bus power system,
and λ = 5 is chosen. The initial state variables are obtained
through the DC optimal power flow algorithm for case-14 in
MATPOWER [44]. The system noise variances are chosen as
σ2
v = σ2

w = 10−4. Furthermore, the parameters of Algorithm
1 are chosen as γ = 0.022 and σ2 = 10−2. In Algorithm
2, the threshold of the generalized Shewhart test is chosen
as φ = 10. Moreover, for the chi-squared test, the window
size is chosen as L = 80, number of disjoint intervals are
chosen as M = 5, the probabilities are chosen as p1 = p2 =

· · · = p5 = 0.2, and the intervals I1, I2, . . . , I5 are determined
accordingly as I1 = [0, 102.081), I2 = [102.081, 110.5475),
I3 = [110.5475, 118.2061), I4 = [118.2061, 127.531), and
I5 = [127.531,∞) based on the cdf of a chi-squared random
variable with Kλ = 115 degrees of freedom. The threshold
of the Pearson’s chi-squared test, i.e., ϕ = 25.0133, is chosen
based on the significance level of 5× 10−5 for a chi-squared
random variable with M − 1 = 4 degrees of freedom. The
thresholds of the generalized Shewhart and the chi-squared
tests are chosen such that the (individual) average false alarm
periods of these tests are in the order of 104. The cyber-attacks
are launched at t = 100.

Firstly, we evaluate the performance of the proposed
schemes in case of an FDI-only attack, a jamming-only attack,
and a hybrid attack. We then evaluate the performance in
case of stealthy hybrid attacks. Particularly, we consider a
non-persistent stealthy attack and a small-magnitude persistent
stealthy attack, and illustrate the performance improvement
obtained with the proposed countermeasures against such
stealthy attacks. Next, we illustrate the mean squared error
(MSE) vs. time plot for the recovered and non-recovered state
estimates in case of a hybrid cyber-attack. Finally, we evaluate
the performance of the proposed schemes in case of a network
topology attack/failure.

A. Case 1: FDI Attack

We firstly consider a random and time-varying persistent
FDI attack where at each time the attacker chooses the
magnitudes of the injected false data and the set of attacked
meters randomly. In particular, at each time, the attacker
compromises the measurements of each meter with probability
0.5 and injects the realizations of the uniform random variable
U [−0.02, 0.02] to the attacked meters. Fig. 1 illustrates the
tradeoff between the average detection delay and the average
false alarm period for the proposed algorithms and also three
benchmark tests, namely the nonparametric CUSUM test in
[29], the Euclidean detector [17] and the cosine-similarity
metric based detector [19] that both check the dissimilarity
between the actual and the predicted measurements (by the
Kalman filter) and declare an anomaly if the dissimilarity
metric is greater than certain thresholds.

Since a nonlinear power system model is studied in [29] and
we use a linear system model, we include a modified version
of the nonparametric CUSUM detector for the linear case. The
stopping time and the update of the decision statistic over time
for the modified nonparametric CUSUM detector are given as
follows:

T̄ , inf {t : St ≥ q} ,
St = St−1 + δt,

δt , ‖yt −Hx̂0
t|t−1‖ − E0

[
‖yt −Hx̂0

t|t−1‖
]
,

where T̄ denotes the corresponding stopping time, St is the
decision statistic at time t where S0 = 0, q is the test
threshold that controls the false alarm rate of the detector, and
E0[‖yt −Hx̂0

t|t−1‖] denotes the expectation of the L2 norm
of the measurement innovation signal in the pre-change case,
computed via a Monte Carlo simulation. The nonparametric
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Fig. 1: Average detection delay vs. average false alarm period
for the proposed detectors and the benchmark tests in case of
a random FDI attack.

CUSUM detector accumulates the difference between magni-
tude of the measurement innovation signal and its expected
value in the pre-change case (normal system operation).

We observe that the proposed algorithms significantly out-
perform the benchmark tests. Moreover, Algorithm 1 slightly
outperforms Algorithm 2. This is because the countermeasures
introduced in Algorithm 2 slightly increase the false alarm rate
of Algorithm 2. Note that in obtaining the tradeoff curve for
Algorithm 2, we keep the thresholds φ and ϕ constant and
only vary h.

We then illustrate the performance of the proposed al-
gorithms as the magnitude of the injected false data varies
while keeping the false alarm rate constant. We again consider
the random and time-varying persistent FDI attack described
above, but this time the magnitudes of the injected data are
realizations of U [−θ, θ], where θ varies between 0.009 and
0.03. Through Fig. 2, we see the advantage of the proposed
countermeasures as the magnitude of the false data takes very
small values. For instance, when θ = 0.009, the average
detection delays of Algorithm 1 and Algorithm 2 are 48.02
and 39.45, respectively.

B. Case 2: Jamming Attack

Next, we consider a random and time-varying persistent
jamming attack. At each time, an attacker jams the measure-
ments of each meter with probability 0.5 where the variances
of the jamming noise are the realizations of the uniform
random variable U [2 × 10−4, 4 × 10−4]. Fig. 3 presents the
delay to false alarm curve for the proposed algorithms and
the benchmark tests. Further, we evaluate the performance
as the magnitude of the jamming noise variance varies by
keeping the false alarm rate constant. In particular, jamming
noise variances are chosen as realizations of U [ϑ, 2ϑ], where ϑ
is varied between 0.75σ2

w and 3σ2
w. Through Fig. 4, we again

observe smaller detection delays in Algorithm 2 compared to
Algorithm 1 in case of very small attack magnitudes.
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Fig. 2: Average detection delay vs. magnitude of the injected
false data for the proposed detectors in case of a random FDI
attack, where the average false alarm period is approximately
1.5× 104.
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Fig. 3: Average detection delay vs. average false alarm period
for the proposed detectors and the benchmark tests in case of
a random jamming attack.
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Fig. 4: Average detection delay vs. variance of the jamming
noise for the proposed detectors in case of a random jamming
attack, where the average false alarm period is approximately
1.5× 104.
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Fig. 5: Average detection delay vs. average false alarm period
for the proposed detectors and the benchmark tests in case of
a hybrid attack.

C. Case 3: Hybrid FDI/Jamming Attack

Next, we consider a random and time-varying persistent
hybrid attack. The attack is combined over the system and it
may also be combined over a subset of meters. In particular,
we consider the attacks described in Sec. V-A and Sec. V-
B altogether. Hence, the attacker chooses a random subset of
meters for FDI attack and another random subset of meters for
jamming attack, where these subsets might overlap with each
other. The attack magnitudes for FDI and jamming attacks
are realizations of U [−0.02, 0.02] and U [2× 10−4, 4× 10−4],
respectively. In Fig. 5, for the same levels of false alarm rate,
we observe smaller detection delays compared to Figures 1
and 3, as expected.

D. Case 4: Non-persistent Stealthy Attack

Next, we consider a stealthily designed on-off attack. Par-
ticularly, after the attack is launched at t = 100, the attacker
performs a hybrid attack as described in Sec. V-C where the
magnitudes of the FDI and jamming attacks are realizations of
U [−0.01, 0.01] and U [10−4, 2×10−4], respectively and the on
and off periods are Ton = 1 and Toff = 3, respectively. As an
example, we choose the maximum tolerable detection delay
as 50 time units and if the attack cannot be detected within
this period, we assume that the attack is missed. In Fig. 6,
we present the missed detection ratio versus average false
alarm period for the proposed algorithms and the benchmark
tests. As discussed in Sec. IV-C.1, against the non-persistent
attacks, mainly the generalized Shewhart test is expected to
perform well. That is, due to the off periods, even though
the accumulated evidence supporting change may not become
reliably high to declare an attack in Algorithm 1, the GLLR
may take high values during the on periods. On the other hand,
since the threshold of the generalized Shewhart test is chosen
very high (φ = 10) to reduce the false alarm level of Algorithm
2, the missed detection ratios in Algorithms 1 and 2 are almost
the same for the small levels of average false alarm period,
i.e., for the small test thresholds. However, for higher levels
of average false alarm period, the missed detection ratio of
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Fig. 6: Missed detection ratio vs. average false alarm period
for the proposed detectors and the benchmark tests in case of
a stealthy non-persistent attack, where the attack is assumed
to be missed if it is not detected within 50 time units.

Algorithm 2 significantly decreases compared to Algorithm 1
and the advantage of introducing the generalized Shewhart test
in Algorithm 2 becomes visible in detecting the non-persistent
stealthy attacks.

E. Case 5: Persistent Stealthy Attack

Although the considered lower bounds γ and σ2 on the
attack magnitudes are already very small, an attacker may
still perform a persistent stealthy attack using even lower
attack magnitudes. Recall that we have previously showed
in Figures 2 and 4 the advantage of Algorithm 2 over Al-
gorithm 1 as the attack magnitudes get smaller for the FDI
and jamming attacks, respectively. This time, we consider
a hybrid attack with even smaller attack magnitudes where
the magnitudes of FDI and jamming attacks are chosen as
realizations of U [−0.005, 0.005] and U [0.5 × 10−4, 10−4],
respectively. We present the missed detection ratio versus the
average false alarm period curve for the proposed algorithms
and the benchmark tests in Fig. 7. We observe that Algorithm
2 significantly outperforms Algorithm 1 due to the introduced
non-parametric chi-squared test in Algorithm 2. Since the
attack magnitudes are very small, the proposed parametric tests
become ineffective to detect such stealthy attacks. Note that
although the non-parametric goodness-of-fit tests such as the
chi-squared test becomes more successful in detecting such
small-magnitude stealthy attacks, they in general lead to longer
detection delays compared to the considered parametric tests
since they usually require more samples for a reliable decision,
mainly because they ignore all the prior knowledge about the
post-attack case.

F. Algorithm 1 vs. Countermeasures Against Stealthy Attacks

With the purpose of illustrating the advantages of additional
countermeasures employed in Algorithm 2 more clearly, Fig. 8
shows a comparison between Algorithm 1 and the countermea-
sures in case of stealthy attacks described in Sec. V-D and
Sec. V-E. Here, the individual average false alarm periods of
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Fig. 7: Missed detection ratio vs. average false alarm period
for the proposed detectors and the benchmark tests in case of
a stealthy small-magnitude persistent attack, where the attack
is assumed to be missed if it is not detected within 50 time
units.
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Fig. 8: Ratio of trials at which Algorithm 1, the generalized
Shewhart test, and the sliding-window chi-squared test detect
the stealthy attacks first (with the minimum delay), where the
individual average false alarm periods of the algorithms are
approximately 1.5× 104.

Algorithm 1, the generalized Shewhart test, and the sliding-
window chi-squared test are nearly equal to each other and
for the non-persistent and persistent stealthy attacks, the figure
shows the ratios over all trials at which each algorithm detects
the attack first (with the minimum delay), where more than one
test may simultaneously declare an attack with the minimum
delay. Through the figure, we observe that the generalized
Shewhart and the sliding-window chi-squared tests outperform
Algorithm 1 in case of non-persistent and persistent stealthy
attacks, respectively. Hence, together with the results obtained
through Figures 6 and 7, we can conclude that in case of
stealthy attacks, the countermeasures improve the detection
performance of Algorithm 2 compared to Algorithm 1.
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Fig. 9: MSE vs. time for the recovered (x̂1
t|t) and non-

recovered (x̂0
t|t) state estimates in case of a hybrid attack.

G. Recovered State Estimates

Fig. 9 presents the MSE versus time curve for the recovered,
i.e., x̂1

t|t, and the non-recovered, i.e., x̂0
t|t, state estimates

during the pre-change period, i.e., for t < 100, and the first
50 time units after a hybrid FDI/jamming attack is launched
to the system at τ = 100. The FDI and jamming attacks are
both of persistent nature as described in Sec. V-C and the
attack magnitudes are realizations of U [−0.1, 0.1] and U [1, 2],
respectively. Through the figure, we observe that the MSE of
the recovered state estimates is significantly smaller than the
MSE of the non-recovered state estimates. Further, we observe
that the recovered state estimates slightly deviate from the
actual system state xt over the attacking period. This is due
to the fact that the MLEs of the attack variables are computed
based on the recovered state estimates (cf. (26) and (27))
and also the recovered state estimates are computed based on
the MLEs of the attack variables (cf. (12)). Hence, the ML
estimation errors accumulate over time during the attacking
period. However, since the attacks can be quickly detected with
the proposed real-time detection schemes, the deviation of the
recovered state estimates is not expected to be significantly
high at the detection time. Furthermore, recall that during the
pre-attack period, whenever the decision statistic of Algorithm
1 reaches zero, the state estimates for the post-attack case are
updated as being equal to the state estimates for the pre-attack
case. Since the decision statistic frequently reaches zero during
the pre-attack period, the ML estimation errors in computing
the recovered state estimates do not accumulate in the pre-
attack period.

H. Case 6: Topology Attack/Fault

Except the proposed nonparametric chi-squared test, the
proposed methods are prone to the errors in the measurement
matrix H due to either cyber-attacks or faults. This is because
Algorithm 1 and the generalized Shewhart test are designed
for a given H (see the hybrid attack model in (5)), whereas the
chi-squared test does not depend on attack model assumptions.

On the other hand, the specific version of topology at-
tack/failure in which some rows of H seem zero to the control
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Fig. 10: Average detection delay vs. average false alarm period
for the proposed detectors and the benchmark tests in case of
a network topology attack/fault.

center (although they are not) corresponds to DoS attacks,
which is covered by the considered hybrid attack model (see
Remark 1). For instance, if the link between two buses in a
power grid breaks down due to an attack or fault, then the row
in H corresponding to the power-flow measurement between
these buses is changed accordingly such that the corresponding
measurement signal becomes unavailable to the control center.
Since the hybrid attack model covers DoS attacks as a special
case, such topology attacks/faults can be detected by the
proposed detectors. In Fig. 10, we illustrate the performance
of the proposed and the benchmark algorithms in detecting a
line break between buses 9 and 10 in the IEEE-14 bus power
system.

VI. CONCLUSIONS

In this paper, we have studied the real-time detection of
hybrid FDI/jamming attacks in the smart grid. For a given
network topology, we have modeled the smart grid as a
linear dynamic system and employed Kalman filters for state
estimation. We have proposed an online CUSUM-based attack
detection and estimation algorithm that is robust to unknown
and time-varying attack parameters. We have also presented
online estimates of the attack parameters in closed form and
recovered state estimates in case of a cyber-attack. Further-
more, we have introduced and analyzed stealthy attacks against
CUSUM-based detectors and specifically against the proposed
algorithm, where the main aim of stealthy attacks is to prevent
the detection or at least to increase the detection delays.
We have presented the generalized Shewhart test and the
sliding-window chi-squared test as countermeasures against
non-persistent and persistent stealthy attacks, respectively.
Through extensive simulations, we have illustrated that the
proposed algorithms can timely and reliably detect hybrid
FDI/jamming attacks and stealthy attacks against CUSUM-
based detectors, that correspond to a significantly diverse range
of potential cyber-attacks targeting the smart grid. Moreover,
the simulations illustrate the effectiveness of the proposed state
recovery mechanism to mitigate the effects of cyber-attacks on
the state estimation mechanism.

The proposed hybrid attack model does not cover network
topology attacks as a special case. As a future work, the
generalized state estimation mechanism [45] can be considered
where both the system state and the network topology are
estimated based on power flow/injection measurements and
measurements regarding the status of network switches and
line breakers, and countermeasures can be developed against
advanced topology attacks where attackers simultaneously
perform hybrid FDI/jamming and network topology attacks.
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